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Abstract. Seasonal to annual forecasts of precipitation patterns are very important for water infrastructure 9 

management. In particular, such forecasts can be used to inform decisions about the operation of multipurpose 10 

reservoir systems in the face of changing climate conditions. Success in making useful forecasts often is achieved by 11 

considering climate teleconnections such as the El-Nino-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) as 12 

related to sea surface temperature variations. We present a statistical analysis to explore the utility of using rainfall 13 

relationships in Sri Lanka with ENSO and IOD to predict rainfall to Mahaweli and Kelani, river basins of the country.   14 

Forecasting of rainfall as classes; flood, drought and normal are helpful for the water resource management decision 15 

making. Results of these models give better accuracy than a prediction of absolute values. Quadratic discrimination 16 

analysis (QDA) and classification tree models are used to identify the patterns of rainfall classes with respect to ENSO 17 

and IOD indices. Ensemble modeling tool Random Forest is also used to predict the rainfall classes as drought and 18 

not drought with higher skill. These models can be used to forecast the areal rainfall using predicted climate indices. 19 

Results from these models are not very accurate; however, the patterns recognized are useful input to the water 20 

resources management and adaptation the climate variability of agriculture and energy sectors. 21 

1 Introduction 22 

The spatial and temporal uncertainty of water availability is one of the major challenges in water resource 23 

management. Understanding patterns and identifying trends in seasonal to annual precipitation are very important for 24 

water infrastructure management. In particular, forecasts that incorporate such information can be used to inform 25 

decisions about the operation of multipurpose reservoir systems in the face of changing climate conditions.  26 

Success in making useful forecasts often is achieved by considering climate teleconnections such as the El-Nino-27 

Southern Oscillation (ENSO) as related to sea surface temperature variations and air pressure over the globe using 28 

empirical data (Amarasekera et.al., 1997; Denise et.al., 2017; Korecha & Sorteberg, 2013; Seibert et.al., 2017). Also, 29 

modes of variability of other tropical oceans can be related to regional precipitation (Dettinger and Diaz 2000; Eden 30 

et al. 2015; Maity and Kumar 2006; Malmgren et al. 2005; Ranatunge et al. 2003; Suppiah 1996; Roplewski & 31 

Halpert,1996). For example, the effect of the Indian Ocean Dipole (IOD) is identified as independent of the ENSO 32 

effect (Eden et al., 2015). Pacific decadal oscillation (PDO), Atlantic multi-decadal mode oscillation (AMO), ENSO, 33 

and IOD teleconnections to precipitation have been found by many studies over the globe. Variations of precipitation 34 

in the  United States are explained by ENSO, PDO and AMO(Eden et al., 2015; National Oceanic and Atmospheric 35 
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Administration, 2017; Ward, Eisner, Flo Rke, Dettinger, & Kummu, 2014), in African countries by ENSO, AMO and 36 

IOD (Reason et.al., 2006), and in South east Asian countries by ENSO: Indonesia (Lee, 2015; Nur’utami & Hidayat, 37 

2016), Thailand (Singhrattna et.al., 2005), China (Cao et al., 2017; Ouyang et al., 2014; Qiu et.al., 2014). Australia 38 

(Bureau of Meteorology, 2012; Verdon & Franks, 2005), and central and south Asia (Gerlitz et al., 2016). 39 

The impact of ENSO and IOD on the position of the intertropical convergence zone (ITCZ) has been identified as a 40 

primary factor driving south Asian tropical climate variations. South Asian countries get precipitation from two 41 

monsoons from the movements of ITCZ in boreal summer (20N) and boreal winter (80S). The South western monsoon 42 

(summer monsoon) is during June-August months and the North eastern monsoon (winter monsoon) is during 43 

December –February months (Schneider et.al, 2014).  Climate teleconnections have been studied for summer 44 

monsoons (Singhrattna et. al., 2005; Surendran et.al., 2015) and winter monsoons (Zubair & Ropelewski, 2006), A 45 

negative correlation of ENSO with Indian summer monsoon has been identified (Jha et al., 2016; Surendran et al., 46 

2015).  47 

The objective of this study is to explore the climate teleconnection to dual monsoons and inter monsoons. Water 48 

resource management decisions typically are based on precipitation throughout the year and it is extremely important 49 

to explore the possibility that rainfall might be related to teleconnection indices for which seasonal forecasts are 50 

available. Sri Lanka is a South Asian country that gets rainfall from two monsoons and two inter-monsoons. We 51 

explore ENSO and IOD climate teleconnection to Sri Lanka precipitation throughout the year. Past studies have 52 

identified climate teleconnection linking precipitation to climate indices for several months and monsoon seasons, and 53 

shown the importance of these for forecasting rainfall in river basins (Chandimala & Zubair, 2007; Chandrasekara et 54 

al., 2003). We extend these analyses across monsoon and inter-monsoon seasons. 55 

Although rainfall anomalies may be correlated strongly with teleconnection indices, the scatter in the data can be 56 

large, making predictions from regression models have high uncertainty. However, water managers may act on 57 

information about whether rainfall is expected to be abnormally low or high. We investigate river basin rainfall 58 

teleconnections to climate indices with classification models. If reasonably accurate relationships can be developed, 59 

they will be useful for water resources management. For example, in Sri Lanka decisions about allocations of water 60 

for irrigation and hydropower could be improved with estimates of when low rainfall seasons are likely. 61 

2 Methods 62 

Sri Lanka is an island in the Indian Ocean (latitude 5o 55′  N - 9o 50′ N, longitudes 79o 40′ E – 81o 53′ E).  Mean annual 63 

rainfall varies from 880 mm to 5500 mm across the island. The rainfall distribution is determined by the monsoon 64 

system of the Indian Ocean interacting with the elevated land mass in the interior of the country. The country is divided 65 

into three climatic zones according to the rainfall distribution: wet zone (annual rainfall > 2500 mm), intermediate 66 

zone (2500 mm < rainfall < 1750 mm) and dry zone (rainfall < 1750 mm) (Department of Agriculture Sri Lanka, 67 

2017). 68 

Sri Lanka, a water-rich country, has 103 river basins varying from 9 km2 to 10448 km2. A large fraction of the water 69 

resources management infrastructure of the country is associated with the Mahaweli and Kelani river basins. The 70 

catchment areas of the Mahaweli and Kelani are 10448 km2 and 2292 km2 respectively. The two rivers start from the 71 
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central highlands. Mahaweli, the longest river, travels to the ocean 331 km in the eastern direction and the Kelani 145 72 

km in the western direction. Average annual discharge volume for the Mahaweli and Kelani basins are 26368 106m3 73 

and 8660 106m3 respectively (Manchanayake & Madduma Bandara, 1999). The Kelani river basin is totally inside the 74 

wet zone whereas the Mahaweli river basin migrates through all three climate zones (Figure 1). 75 

The temporal pattern of rainfall in Sri Lanka can be divided into four seasons as follows. 76 

(1) Generally low precipitation across the country from the Northeast monsoon (NEM), which gets most precipitation 77 

during January to February. The dry zone of the country gets significant precipitation from the NEM, while wet 78 

zone gets very little rainfall during this period.  79 

(2) The whole country gets precipitation from the first inter-monsoon (FIM) during March to April months. However, 80 

rainfall during this period is not very high across the country. 81 

(3) The highest precipitation for the country is from the South western monsoon (SWM) during May to September. 82 

However, only the wet zone gets high precipitation during this season. 83 

(4) The whole country gets precipitation from the second inter-monsoon (SIM) during October to December. 84 

Generally, precipitation from SIM is higher than FIM. 85 

The time period of NEM and SIM are generally considered as December to February and October to November 86 

respectively (Department of Meteorology Sri Lanka, 2017; Malmgren et.al, 2003; Ranatunge et al., 2003). However, 87 

considering the bulk amount of water received from the monsoon, we consider January and February as the period of 88 

NEM and October to December as the period of SIM.  89 

Reflecting the rainfall seasons, the country has two agriculture seasons “Yala” (April - September) and 90 

“Maha”(October - March). Because the dry zone gets minimal precipitation during the SWM, the agricultural systems 91 

(165,000 ha) developed under the Mahaweli multipurpose project depend on irrigation water during the Yala season. 92 

The country depends on stored water to drive hydropower year round. The Mahaweli and Kelani hydropower plants 93 

of 810 MW and 335 MW capacity serve as peaking and contingency reserve power to the power system (Ceylon 94 

Electricity Board, 2015). Management of reservoir systems is done to cater both to irrigation and hydropower 95 

requirements.  96 
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 97 

2.1 Sub Basin Rainfall (Areal Rainfall) 98 

Monthly rainfall data for years 1950-2013 are used for the study (Ceylon Electricity Board, 2017). River basin rainfall 99 

was calculated using the Thiessen polygon method (Viessman, 2002). The Mahaweli river basin is divided into 16 100 

Thiessen polygons and the Kelani river basin is divided into 11 Thiessen polygons (Figure 1). Eight sub-basins are 101 

selected for analysis: Morape, Randenigala, Peradeniya, Manampitiya and Bowatenna represent the Mahaweli major 102 

reservoir catchments and irrigation tanks, and Norton Bridge, Norwood and Laxapana represent the Kelani basin 103 

reservoir catchments. The catchment of the major Mahaweli river reservoir cascade (Kotmale, Victoria, Randenigala, 104 

Rantambe, Bowatenna) is represented by Morape and Peradeniya located in the wet zone and Randenigala and 105 

Bowatenna located in the intermediate zone. The dry zone major irrigation catchments of the Mahaweli are represented 106 

by Manampitiya. The Kelaniya reservoir cascade (Norton Bridge & Moussakele) catchments in the wet zone are 107 

represented by Laxapana, Norton Bridge and Norwood sub-basins.  108 
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Figure 1:Mahaweli and Kelani river basins of Sri Lanka 
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We calculate the rainfall for the four seasons, NEM, FIM, SWM and SIM for 64 years of historical data. Rainfall 109 

anomalies are calculated by reducing the seasonal mean rainfall (Eq.(1)) and standardized anomalies are calculated 110 

by dividing the rainfall anomalies by the standard deviation (SD) (Eq.(2)).  111 

 𝑋𝐴𝑁𝑀 = (𝑋 −  �̅�𝑡) Eq.(1) 

 𝑋𝑆_𝐴𝑁𝑀 = (𝑋 − �̅�𝑡)/𝑆𝐷𝑡 Eq.(2) 

Where, �̅�𝑡 is the average of seasonal rainfall, 𝑋𝐴𝑁𝑀 is the rainfall anomaly and  𝑋𝑆_𝐴𝑁𝑀 is the standardized rainfall 112 

anomaly.  113 

Standardized rainfall anomalies are divided into three classes as dry, average and wet (Table 1). A normality test for 114 

the rainfall data classes is done using the Shapiro-Wilk test. If the rainfall data are not normally distributed, log (e), 115 

square root or square functions are used to transform the data into normally distributed data sets. 116 

Table 1: Rainfall anomaly classification 117 

Class Range 

dry Minimum <= 𝑋𝑆_𝐴𝑁𝑀< – 0.5 

average -0.5 <= 𝑋𝑆_𝐴𝑁𝑀<0.5 

wet 0.5 <= 𝑋𝑆_𝐴𝑁𝑀<= Maximum 

 118 

2.2 ENSO & IOD Indices 119 

The Multivariate ENSO Index (MEI) is based on sea-level pressure, zonal and meridional components of the surface 120 

wind, sea surface temperature, surface air temperature, and total cloudiness fraction of the sky (National Oceanic and 121 

atmospheric administration 2017). The Indian Ocean Dipole (IOD) is an oscillation of sea surface temperature in the 122 

equatorial Indian ocean between Arabian sea and south of Indonesia (Bureau of Meteorology Australia, 2017). IOD 123 

is identified as relevant to the climate of Australia (Power et.al., 1999) and countries surrounded by the Indian ocean 124 

in southern Asia (Chaudhari et al., 2013; Maity  & Nagesh Kumar, 2006; Qiu et al., 2014; Surendran et al., 2015). The 125 

Dipole Mode Index (DMI) is used to represent the IOD capturing the west and eastern equatorial sea surface 126 

temperature gradient.  127 

Data used for the analyses are MEI monthly data from years 1950 – 2013, (Climate indices, NOAA, 2017) and the 128 

DMI monthly data from years 1950-2013 ( HadISST dataset, Japan Agency for Marine-Earth Science and Technology 129 

2017). Averages of MEI and DMI values for four rainfall seasons are used for the statistical analysis. 130 

2.3 Statistical Analyses  131 

Seasonal values of MEI and DMI were used as the predictors to classify seasons into the three rainfall classes. The 132 

total data set is divided into 75 % for training the model and 25 % for testing model performance. Quadratic 133 

discriminant analysis (QDA) and classification trees were selected for the analyses. A random forest model also was 134 

applied to investigate the reliability of a cross-validated statistical forecast tool based on an advance estimate of MEI 135 

and DMI. 136 
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2.3.1 Quadratic Discriminant Analysis (QDA) 137 

QDA assumes that observations from each class are drawn from a Gaussian distribution. Substituting a Gaussian 138 

density function of Kth class to Bayes theorem and taking the log values, the quadratic discriminant function is derived 139 

(James et.al., 2013; Löwe et.al., 2016) (Eq.(3))Eq.(3.  140 

 
𝛿𝑘(𝑥) = −

1

2
 (𝑥 − 𝜇𝑥)𝑇∑𝑘

−1(𝑥 − 𝜇𝑥 )  + 𝑙𝑜𝑔 𝜋𝑘            Eq.(3) 

The covariance matrix (∑𝑘), mean (𝜇𝑥) and prior probability (𝜋𝑘) for each class are estimated from the training data 141 

set. These values are inserted into the discriminant function together with state variables and the corresponding class 142 

is selected according to the largest value of the function. The number of parameters to be estimated for the QDA model 143 

for K classes and p predictors are 𝐾. 𝑝. (𝑝 + 1) ⁄ 2 values. The QDA model output is the probability that an 144 

observation of a climate category will fall into each of the rainfall classes. 145 

2.3.2 Classification Tree model 146 

For the classification tree model the predictor space is divided into non-overlapping regions (𝑅1. . 𝑅𝑗). A classification 147 

tree predicts each observation as belonging to the most commonly occurring class of the training data regions (James 148 

et.al., 2013).  149 

The Gini index (𝐺) is considered as the criterion for splitting into regions (James et.al., 2013).   150 

 

𝐺 = ∑ �̂�𝑚𝑘

𝐾

𝑘=1

(1 − �̂�𝑚𝑘) Eq.(4) 

In Eq.(4), �̂�𝑚𝑘 represents the fraction of observations in the mth class that belong to the kth class. The Gini index is 151 

considered as a measure of node purity of the tree model, since small values of the index indicate that node has a 152 

higher number of observations from a single class. The complexity of trees is adjusted using a pruning process to 153 

produce more interpretable results. 154 

Tree models give the probability that an observation falls into each of the three rainfall classes. The predicted class is 155 

assigned based on the highest probability. Tree models handle ties of probability values by randomly assigning the 156 

class.   157 

2.3.3 Random Forest 158 

A random forest is an ensemble learning method used for classification and regression problems. The method is based 159 

on a multitude of decision trees based on training data with the final model as the mean of the ensemble (Breiman, 160 

2001). Individual trees are built on a random sample of the training data with several predictors from the total number 161 

of predictors. Individual trees are built from the bootstrapped training data set.  162 

 163 
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In a random forest model the importance of the variable is measured as the decrease in node impurity from the splits 164 

over the variable. This value is calculated by averaging the Gini index over the multitude of trees with a larger value 165 

indicating high importance of the predictor (James et.al., 2013). 166 
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 167 

Figure 2: Sub basin Rainfall for (a) Morape, (b) Peradeniya,(c) Randenigala, (d) Bowatenna, (e) Laxapana (f) 168 
Norwood, (g) Norton Bridge, and (h) Manampitiya. 169 
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3 Results 170 

Monthly rainfall boxplots of eight sub basins over the year for 1950 - 2013 illustrate the seasonal and the spatial 171 

variation of rainfall patterns (Figure 2). The largest fraction of total rainfall in the dry zone occurs at the end of the 172 

SIM (December) and during the NEM (January - February) with correspondingly high variability whereas there is 173 

little rainfall in the dry zone during the SWM (May - September) with correspondingly little variability (Figure 2 (h)). 174 

The intermediate zone receives approximately 60% of total rainfall from the SIM and NEM. Although the variability 175 

of the rainfall is low in the intermediate zone, high rainfall can occur in all seasons (Figure 2 (c) and (d)). In the wet 176 

zone, a large portion of rainfall occurs in SWM and early months of SIM (October-November). High variability of 177 

wet zone rainfall is observed at the end of FIM (April), in the SWM (May-September), and at the start of SIM 178 

(October) (Figure 2 (a), (b), (e), (f) and (g)).  179 

Similar to other investigators, we observe several strong correlations between rainfall anomalies and the climate 180 

indices (Table A.1, Appendix). For example, rainfall in the SWM is very important for stations in the wet zone of 181 

the country which is the source of a large amount of water stored in reservoirs. Correlation coefficients between 182 

SWM rainfall at Norton Bridge are negative and strong, -0.31 for MEI (p=0.01) and -0.37 for DMI (p<0.01). The 183 

strength of the correlation notwithstanding, the residuals from a regression model indicate that high uncertainty 184 

would attach to any forecast (Fig. 3). Thus, we are led to explore the efficacy of classification methods (Appendix). 185 

 186 

Figure 3: Linear regression of rainfall anomaly on MEI and DMI. High values of MEI and DMI are associated with 187 
low values of rainfall. 188 

We present classification results for two sub-basins, one that has the highest rainfall during the NEM, Manampitiya, 189 

and one that has the highest rainfall for the SWM, Norton Bridge (Figure 4). Norton Bridge represents the areal rainfall 190 

of reservoir catchments in the wet zone and Manampitiya represents the rainfall that contributes to irrigation tanks in 191 

the dry zone. Results of other sub-basins are presented in the supplementary materials (Appendix). 192 

 193 

The SWM is a season when the wet zone receives the bulk of rainfall. At Norton Bridge, the occurrences of the dry 194 

rainfall anomaly class in the SWM is seen to “clump” in the region of relatively high MEI and DMI. Both the 195 

classification tree and the QDA successfully identify the pattern (Fig. 4(a) and 4(c)) with an overall accuracy of 73 %, 196 
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19 and 16 correct out of 22 occurrences (Table 2). In the dry zone the NEM season is one of the most important for 197 

rainfall. At Manampitiya, the MEI provides the primary variable in the classification, with the dry anomaly class being 198 

correctly selected in 52 % by tree model and 95 % with the QDA model. The results suggest that it may be possible 199 

to identify seasons when it is expected to be anomalously dry. The correct classification of “average” conditions likely 200 

has less importance for water managers. We explored classification using two classes, “Dry” and “Not Dry.” In this 201 

case, the classification model again correctly classifies 86 % of the anonymously dry cases and gets more than 69 % 202 

of the “Not Dry” cases correct (Figure 5).   203 

 204 
Figure 4: Norton Bridge and Manampitiya rainfall classes (dry, average, wet ) identified by ENSO and IOD 205 
phenomena. (a) Norton Bridge SWM rainfall classification tree model (b) Manampitiya NEM rainfall classification 206 
tree model (c) Norton Bridge SWM rainfall QDA 207 
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 208 

Figure 5: Classification tree for Norton Bridge SWM rainfall using two categories (dry and not dry) 209 

Table 2: Classification model results. Highlighted cells indicate where there may be information content with 210 
respect to forecasting either dry or wet anomaly classes as judged by a classification success rate of at least 2/3.  211 

Season 

Manampitiya Norton Bridge 

QDA Model QDA Model 

Dry Normal Wet Dry Normal Wet 

NEM 22/23 11/25 1/16 5/20 25/29 2/15 

FIM 9/21 20/24 5/19 3/20 14/23 14/20 

SWM 2/21 30/27 2/16 16/22 9/22 9/20 

SIM 17/25 13/20 7/19 7/22 15/22 11/20 

Season 
Tree Model Tree Model 

Dry Normal Wet Dry Normal Wet 

NEM 12/23 9/25 11/16 11/20 18/29 8/15 

FIM 9/21 19/24 8/19 13/21 6/23 15/20 

SWM 6/21 25/27 7/16 19/22 8/22 9/20 

SIM 20/25 0/20 17/19 19/22 5/22 14/20 

 212 

Classification trees are known to be unstable. That is, small changes in the observations can lead to large changes in 213 

the decision tree. The random forest approach overcomes the issue by building a “bag” of trees from bootstrap samples. 214 

The robustness of the model can then be checked by considering the “out-of-bag” error. The results of the random 215 

forest indicate that predictions of three rainfall anomaly classes using MEI and DMI is not feasible (Table 3). The out-216 

of-bag error rate is close to two thirds, which for three categories is equivalent to a random selection. 217 

 218 
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Table 3: Results of random forest ensemble classification results 220 

Season 
Norton Bridge Manampitiya 

Dry Normal Wet 

OOB 

Er Dry Normal Wet 

OOB 

Er 

NEM 11/20 12/29 6/15 55% 14/23 10/25 5/16 55% 

FIM 7/21 8/23 8/20 64% 10/21 11/24 6/19 58% 

SWM 9/22 6/22 8/20 64% 6/21 17/27 5/16 56% 

SIM 13/22 9/22 9/20 52% 15/25 8/20 7/19 53% 

 221 

However, the results of the random forest for a classification as either “Dry” or “Not Dry” suggests that there may 222 

be skill in such a prediction. The out-of-bag error rates for this case range from 22 % to 38 % for Norton Bridge and 223 

Manampitiya (Table 3) and from 20 % to 39 % across all stations (Table A 6).    224 

Table 4: Results of random forest ensemble classification results for two rainfall anomaly classes 225 

Season 

Norton Bridge Manampitiya 

Dry Not dry 
OOB 

Error 
Dry Not dry 

OOB 

Error 

NEM 9/20 36/44 30 % 13/23 33/41 28 % 

FIM 5/21 35/43 38 % 8/21 35/43 33 % 

SWM 9/22 32/42 36 % 5/16 34/43 39 % 

SIM 10/22 36/42 28 % 16/25 34/39 22 % 

 226 

4 Discussion 227 

Understanding seasonal rainfall variability across the spatially diverse Mahaweli and Kelani river basins is important 228 

for irrigation and hydropower water planning. SWM and SIM are the key rainfall seasons for sub basins in the wet 229 

zone (Norton Bridge, Morape, Peradeniya and Laxapana), delivering 80 % of annual rainfall (Figure 2 (a),(b),(e),(f)). 230 

For the dry zone (Manampitiya) and intermediate zone (Randenigala, Bowatenna) sub basins, the major season is 231 

SIM, which delivers more than 40 % of annual rainfall (Figure 2 (c),(d),(h)). The dry zone also gets rainfall during 232 

the NEM (24 % of annual rainfall at Manampitiya) and the intermediate zone gets rainfall during the SWM (25 % - 233 

30 % of annual rainfall at Randenigala and Bowatenna).  234 

Climate teleconnection indices are related to rainfall anomalies observed during the two main growing seasons, Yala 235 

and Maha. The Maha agriculture season (October-March) depends on rain from SIM and NEM. During El Nino events 236 

rainfall increases for the first three months of the Maha season (SIM: October-December) (Fig. A 1, Fig. A 2, Fig. A 237 

3, Fig. A 4) (Ropelewski and Halpert, 1995) and decreases during the last three months (NEM: January-March)(Figure 238 

4 (b)). In Yala season (April-September), La-Nina events enhance the rainfall during SWM (Figure 4(a), (c), Fig. A 239 

1, Fig. A 2, Fig. A 3, Fig. A 4)(Whitaker et.al, 2001). During El Nino events the SWM rainfall is reduced (Figure 4(a), 240 

(c), Fig. A 5, Fig. A 6) (Zubair, 2003; Chandimala & Zubair, 2007; Chandrasekara et.al,2017). The El Nino impact 241 

during the SWM is not as significant as it is during the NEM season (International Research Institute, 2017a). We 242 
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find, however, that there is an interaction between two teleconnection indices, MEI and IOD for SWM rainfall. During 243 

the Yala season there is a high probability of having a drought when both the IOD and MEI are positive (Figure 5). 244 

Also not having drought is probable when both the IOD and MEI are negative (Figure 5, Figure A 5, Fig. A 6).  245 

Classification of wet, average, and dry rainfall anomalies using the MEI and DMI indices is successful. For example, 246 

a dry SWM season for Norton Bridge (Table 2) and other wet-zone stations (Table A 3) is classified correctly with 247 

greater than 70 % accuracy with QDA and tree models. However, a random forest approach demonstrates that there 248 

is little skill in identifying a full wet-average-dry classification. However, a random forest model using only two 249 

rainfall categories shows more than 60 % accuracy in identifying “dry” and “not dry” classes of key rainfall seasons 250 

of the wet zone (Table 4, Table A 6). Similarly, for dry zone locations such as Manampitiya, the dry rainfall class 251 

identification for NEM and SIM seasons is about 60 % ( Table 4, Table A 6).     252 

Our statistical classification models can be combined with MEI and DMI forecasts to indicate the season-ahead 253 

expectation for rainfall. ENSO forecasts are available from the International Research Institute for Climate and Society 254 

(International Research Institute, 2017b) and IOD forecasts are available in the Bureau of Meteorology (BOM), 255 

Australian Government (Bureau of Meteorology, 2017). ENSO and IOD predictions are also associated with the 256 

uncertainty. Therefore, final forecast accuracy is a combination of the MEI, DMI forecast uncertainties and model’s 257 

accuracy rate in each class. Although overall prediction accuracy is not extremely high, a forecast of an anomalously 258 

low rainfall season can have value for risk-averse farmers (Cabrera et.a., 2007) and can guide plans for hydropower 259 

management (Block & Goddard, 2012).  260 

The electricity and agriculture sectors of Sri Lanka heavily rely on Mahaweli and Kelani river water resources so 261 

season ahead forecasts of abnormally low rainfall should be useful for decisions on adaptation measures. For example, 262 

water availability of the first three months of a growing season is important for crop selection and the extent of land 263 

to be cultivated. Hydropower planning and scheduling of maintenance of the power plants also can benefit from 264 

season-ahead forecasts. The damage that can occur due to incorrect rainfall forecasts in the agriculture and energy 265 

sectors can be minimized with emergency planning during the season, which is the usual practice.  266 

Although the accuracy of predicting low or not low seasonal rainfall is not very high, decisions based on forecasts that 267 

are improvements over climate averages should be an improvement over current practices. The accuracy of statistical 268 

models can be improved with longer records, which are important to train the classification models.  Also, models can 269 

be fine-tuned for important shorter periods such as crop planting months and harvesting months for irrigation water 270 

planning.  271 

5 Conclusion 272 

ENSO and IOD phenomena teleconnections with river basin rainfall provide potentially useful information for water 273 

resource management. Relationships identified between teleconnection indices and river basin rainfall agree with other 274 

research findings. Prediction of seasonal rainfall classes from ENSO and IOD indices can inform water resources 275 

managers in reservoir operation planning for both hydropower and irrigation releases.    276 

 277 

 278 
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 396 

Appendix: Identifying ENSO Influences on Rainfall with Classification 397 

Models: Implications for Water Resource Management of Sri Lanka 398 

Correlation coefficients between rainfall anomalies and MEI and DMI are negative for the NEM, FIM and SWM 399 

seasons and positive for the SIM season. Rainfall anomalies correlations to the DMI are not stronger as the correlations 400 

to the MEI. However, there are strong correlations for the anomalies of major monsoons to the sub basins and DMI 401 

values. For example, wet sub basins (Morape, Peradeniya, Laxapana, Norwood, Norton Bridge) have high correlation 402 

coefficient between SWM rainfall anomalies and DMI, while dry zone (Manampitiya) and intermediate zone 403 

(Randenigala, Bowatenna) sub basins have high correlation coefficient between NEM and SIM rainfall anomalies.   404 

Table A. 1: Correlation between rainfall anomalies and MEI, DMI indices. High correlation coefficients are 405 
highlighted. 406 

Rainfall Morape Peradeniya Randenigala Bowatenna 

Month MEI DMI MEI DMI MEI DMI MEI DMI 

NEM -0.35 -0.09 -0.38 -0.11 -0.30 -0.11 -0.35 -0.20 

FIM -0.28 -0.11 -0.27 -0.06 -0.29 -0.04 -0.23 -0.02 

SWM -0.35 -0.29 -0.35 -0.31 -0.17 -0.24 -0.18 -0.12 

SIM 0.21 0.12 0.17 0.09 0.37 0.35 0.35 0.36 

Rainfall Laxapana Norwood Norton Bridge Manampitiya 

Month MEI DMI MEI DMI MEI DMI MEI DMI 

NEM -0.27 -0.01 -0.28 -0.04 -0.32 -0.01 -0.26 -0.16 

FIM -0.28 -0.07 -0.27 -0.13 -0.18 -0.08 -0.20 -0.14 

SWM -0.30 -0.31 -0.21 -0.24 -0.31 -0.37 -0.07 -0.03 

SIM 0.10 0.08 0.29 0.28 0.02 -0.15 0.45 0.51 

 407 

Classification methods classification tree models, random forest and quadratic discriminant analysis identify the 408 

relationship between standardized rainfall anomaly classes (dry, average, wet) and MEI and DMI values (Figure A 1, 409 

Figure A 2, Figure A 3, Figure A 4). Positive values of MEI and DMI values resulted dry or average rainfall class for 410 

the NEM, FIM and SWM seasons. However, for SIM rainfall has wet or average class for the positive values of MEI 411 

and DMI. Accuracy of model result are high for the dominant monsoon rainfall seasons of each sub basin (Table A. 412 

2, Table A. 3, Table A. 4). Ensemble model approach with random forest has given comparatively lower out-of-bag 413 

error rate for the dominant monsoons’ rainfall anomaly classification (Table A. 4).  For example, wet zone sub basins 414 

such as Norton Bridge, Norwood, Laxapana, Peradeniya and Morape random forest error rate is lower for the SWM 415 

and SIM seasons. Same as, dry and intermediate sub basins Manampitiya, Randenigala and Bowatenna NEM and SIM 416 

rainfall classes accuracy rate is high than other rainfall seasons. Also all three models have higher accuracy rate in 417 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-249
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 15 June 2018
c© Author(s) 2018. CC BY 4.0 License.



18 
 

identifying dry events and error rate of identifying wet and dry class also less 15 % (Table A. 2, Table A. 3, Table A. 418 

4).  Further analysis of two rainfall classes dry and not dry rainfall classes are identified relevant to the MEI and DMI 419 

values with classification tree and random forest methods (Figure A 5, Figure A 6). Classification tree models for two 420 

classes have higher accuracy rate as 65 % - 84 % for eight sub basins (Table A. 5). Random forest out-of-bag error 421 

for two classes models are vary between 20%-39% and shows higher skill in identifying rainfall classes for major 422 

monsoons of the sub basins (Table A. 6). MEI shows higher variable importance of identifying the rainfall classes 423 

compare to the DMI values. Specially, for NEM and SIM which are important to the dry zone sub basins importance 424 

of MEI is high in the classification. However, some of the wet zone sub basins shows equal importance of DMI 425 

variable in identifying two rainfall classes in FIM and SWM (Figure A 7).  426 

 427 
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Figure A 1: Identifying relationships between three rainfall classes (dry, average, wet)  and MEI and DMI values 

using classification tree models.(a)Morape (b)Peradeniya (c)Randenigala (d)Bowatenna 
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Figure A 2: Identifying relationships between three rainfall classes (dry, average, wet)  and MEI and DMI values 
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Table A. 2: Classification tree model results. Highlighted cells indicate where there may be information content with 454 
respect to forecasting either dry or wet anomaly classes 455 

Season 
Morape Peradeniya 

Dry Normal Wet Dry Normal Wet 

NEM 21/21 13/29 0/14 10/20 24/31 0/13 

FIM 5/19 19/25 12/20 5/20 28/28 6/16 

SWM 12/24 13/21 12/19 9/23 11/19 18/22 

SIM 8/19 18/28 9/17 12/25 16/19 5/20 

Season 
Randenigala Bowatenna 

Dry Normal Wet Dry Normal Wet 

NEM 11/24 11/25 12/15 24/24 12/19 0/21 

FIM 8/20 24/25 3/19 17/21 17/25 0/18 

SWM 8/21 23/24 8/19 18/25 6/21 12/18 

SIM 14/24 11/21 15/19 17/21 9/26 13/17 

Season 
Laxapana Norwood 

Dry Normal Wet Dry Normal Wet 

NEM 0/19 24/24 6/21 4/19 22/28 10/17 

FIM 2/20 14/26 18/18 7/19 19/21 12/24 

SWM 19/23 14/20 8/21 10/20 14/27 11/17 

SIM 8/21 22/26 9/17 16/20 15/25 11/19 

Season 
Norton Bridge Manampitiya 

Dry Normal Wet Dry Normal Wet 

NEM 11/20 18/29 8/15 12/23 9/25 11/16 

FIM 13/21 6/23 15/20 9/21 19/24 8/19 

SWM 19/22 8/22 9/20 6/21 25/27 7/16 

SIM 19/22 5/22 14/20 20/25 0/20 17/19 

 456 

 457 

 458 
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Figure A 3: Identifying relationships between three rainfall classes (dry, average, wet)  and MEI and DMI values 
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 464 

Figure A 4:Identifying relationships between three rainfall classes (dry, average, wet) and MEI and DMI values 465 
using classification tree models. (e) Laxapana (f) Norwood (g) Norton Bridge (h) Manampitiya 466 
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Table A. 3: Classification QDA model results. Highlighted cells indicate where there may be information content 475 
with respect to forecasting either dry or wet anomaly classes 476 

Season 
Morape Peradeniya 

Dry Normal Wet Dry Normal Wet 

NEM 6/21 28/29 0/14 10/20 28/31 0/13 

FIM 7/19 22/25 9/20 5/20 28/28 2/16 

SWM 19/24 6/21 13/19 20/23 6/19 13/22 

SIM 5/19 26/28 2/17 13/25 16/19 4/20 

Season 
Randenigala Bowatenna 

Dry Normal Wet Dry Normal Wet 

NEM 17/24 8/25 4/15 24/24 9/19 3/21 

FIM 8/20 13/25 12/19 9/21 23/25 1/18 

SWM 4/21 13/24 8/19 19/25 7/21 8/18 

SIM 19/24 16/21 6/19 13/21 15/26 10/17 

Season 
Laxapana Norwood 

Dry Normal Wet Dry Normal Wet 

NEM 4/19 15/24 14/21 8/19 23/28 6/17 

FIM 4/20 22/26 8/18 6/19 16/21 13/24 

SWM 20/23 13/20 10/21 6/20 19/27 8/17 

SIM 9/21 22/26 3/17 11/20 13/25 8/19 

Season 
Norton Bridge Manampitiya 

Dry Normal Wet Dry Normal Wet 

NEM 5/20 25/29 2/15 22/23 11/25 1/16 

FIM 3/20 14/23 14/20 9/21 20/24 5/19 

SWM 16/22 9/22 9/20 2/21 26/27 6/16 

SIM 7/22 15/22 11/20 17/25 13/20 7/19 
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Table A. 4: Random forest model results. Highlighted cells indicate where there may be information content with 487 
respect to forecasting either dry or wet anomaly classes 488 

Season 
Morape Peradeniya 

Dry Normal Wet Dry Normal Wet 

NEM 12/21 12/29 5/14 9/20 17/31 5/13 

FIM 8/19 14/25 10/20 7/20 17/28 6/16 

SWM 11/24 6/21 11/19 11/23 1/19 13/22 

SIM 8/19 16/28 2/17 5/25 9/19 6/20 

Season 
Randenigala Bowatenna 

Dry Normal Wet Dry Normal Wet 

NEM 10/24 8/25 4/15 16/24 6/19 11/21 

FIM 9/20 8/25 8/19 16/21 14/25 4/18 

SWM 9/21 14/24 6/19 14/25 7/21 5/18 

SIM 15/24 6/21 7/19 3/21 14/26 11/17 

Season 
Laxapana Norwood 

Dry Normal Wet Dry Normal Wet 

NEM 3/19 11/24 9/21 9/19 16/28 8/17 

FIM 1/20 18/26 1/18 8/19 10/21 12/24 

SWM 19/23 9/20 4/21 6/20 15/27 4/17 

SIM 10/21 12/26 3/17 8/20 14/25 8/19 

Season 
Norton Bridge Manampitiya 

Dry Normal Wet Dry Normal Wet 

NEM 11/20 12/29 6/15 14/23 10/25 5/16 

FIM 7/21 8/23 8/20 10/21 11/24 6/19 

SWM 9/22 6/22 8/20 6/21 17/27 5/16 

SIM 13/22 9/22 9/20 15/25 8/20 7/19 
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Figure A 5: Identifying relationships between two rainfall classes (dry, not dry)  and MEI and DMI values using 

classification tree models for wet zone sub basins for SWM and SIM seasons. (a) Morape (b) Peradeniya (c) 

Laxapana (d) Norwood (e) Norton Bridge   
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 494 

Figure A 6: Identifying relationships between two rainfall classes (dry, not dry) and MEI and DMI values using 495 
classification tree models for dry and intermediate zone sub basins for NEM and SIM seasons. (a) Randenigala (b) 496 
Bowatenna (c) Manampitiya 497 

 498 

Table A. 5: Classification tree model results for major rainfall season to the sub basins.  499 

Season 

Morape Peradeniya Laxapana Norwood Norton Bridge 

Dry Not dry Dry Not dry Dry Not dry Dry 
Not 

dry 
Dry Not dry 

SWM 21/24 22/40 18/23 26/41 19/23 27/41 12/20 34/44 19/22 29/42 

SIM 10/19 39/45 12/19 30/45 8/21 36/43 11/20 38/44 13/22 36/42 

Season 
Randenigala Bowatenna Manampitiya     

Dry Not dry Dry Not dry Dry Not dry 
    

NEM 11/24 31/40 14/24 34/40 13/23 34/41     

SIM 23/24 22/40 15/21 32/43 22/25 26/39     
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 501 

Table A. 6: Random forest model results.  502 

Season 

Morape Peradeniya 

Dry Not dry 
OOB 

Error 
Dry Not dry 

OOB 

Error 

NEM 10/21 33/43 33% 8/20 34/44 34% 

FIM 5/19 36/45 36% 6/20 37/44 33% 

SWM 11/24 29/40 38% 11/23 28/41 39% 

SIM 5/19 39/45 33% 5/19 37/45 34% 

Season 

Randenigala Bowatenna 

Dry Not dry 
OOB 

Error 
Dry Not dry 

OOB 

Error 

NEM 8/24 31/40 39% 15/24 33/40 25% 

FIM 6/20 39/44 30% 13/21 38/43 20% 

SWM 7/21 38/43 30% 11/25 29/39 38% 

SIM 13/24 31/40 31% 6/21 35/43 36% 

Season 

Laxapana Norwood 

Dry Not dry 
OOB 

Error 
Dry Not dry 

OOB 

Error 

NEM 8/20 37/45 30% 10/19 39/45 23% 

FIM 7/20 37/44 31% 8/19 39/45 26% 

SWM 12/23 27/41 39% 7/20 37/44 31% 

SIM 9/21 34/43 33% 7/20 37/44 31% 

Season 

Norton Bridge Manampitiya 

Dry Not dry 
OOB 

Error 
Dry Not dry 

OOB 

Error 

NEM 9/20 36/44 30% 13/23 33/41 28% 

FIM 5/21 35/43 38% 8/21 35/43 33% 

SWM 9/22 32/42 36% 5/16 34/43 39% 

SIM 10/22 36/42 28% 16/25 34/39 22% 
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 511 

 512 

 513 

Figure A 7: Random forest importance of variable to identify the dry and not dry classes of rainfall anomalies 514 
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